Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification
نویسندگان
چکیده
HAPEX-MOBILHY data, consisting of one year of hourly atmospheric forcing data at Caumont (SAMER No. 3, 43.68°N, 0.1°W) were used repeatedly to run the two-layer Variable Infiltration Capacity (VIC-2L) land-surface scheme until the model reached equilibrium in its water and energy balance. The equilibrium results are compared with one year of weekly soil moisture measurements at different depths, the estimated latent heat fluxes for 35 days of the intensive observation period (IOP), and the accumulated evaporation, runoff and drainage for the entire soya crop season. The latent heat flux comparisons show that VIC-2L tends to underestimate the evaporation due to the low soil moisture in its upper layer. The soil moisture comparison shows that the total soil water content is well simulated in general, but the soil water content in the top 0.5 m is underestimated, especially in May and June. These comparisons suggest that the lack of a mechanism for moving moisture from the lower to the upper soil layer in VIC-2L is the main cause for model error in the HAPEX-MOBILHY application. A modified version of VIC-2L, which has a new feature that allows diffusion of moisture between soil layers, and a 0.1 m thin layer on top of the previous upper layer, is described. In addition, the leaf area index (LAD and the fraction vegetation cover are allowed to vary at each time step in a manner consistent with the rest PILPS-RICE Workshop, rather than being seasonally fixed. With these modifications, the VIC-2L simulations are re-evaluated. These changes are shown to resolve most of the structural deficiencies in the original version of the model. The sensitivity analysis of the new version of the model to the choices of soil depths and root distribution show that the evapotranspiration and soil moisture at the model equilibrium state are more sensitive to the root distribution than to the soil depth.
منابع مشابه
The Temporal Variability of Soil Moisture and Surface Hydrological Quantities in a Climate Model
The variance budget of land surface hydrological quantities is analyzed in the second Atmospheric Model Intercomparison Project (AMIP2) simulation made with the Canadian Centre for Climate Modelling and Analysis (CCCma) third-generation general circulation model (AGCM3). The land surface parameterization in this model is the comparatively sophisticated Canadian Land Surface Scheme (CLASS). Seco...
متن کاملEegional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model
A grid network version of the two-layer Variable Infiltration Capacity (VIC-2L) macroscale hydrological model is described. The VIC-2L model is a hydrologically-based SVAT (Soil Vegetation Atmospheric Transfer) scheme designed to represent the land surface in numerical weather prediction and climate models. It is coupled to a linear routing scheme which is optimized with measured precipitation ...
متن کاملVariable infiltration capacity cold land process model updates
The Variable Infiltration Capacity (VIC) macroscale hydrologic model is distinguished from other Soil–Vegetation– Atmosphere Transfer schemes (SVATS) by its focus on runoff processes. These are represented via the variable infiltration curve, a parameterization of the effects of subgrid variability in soil moisture holding capacity, from which the model takes its name, and a representation of n...
متن کاملImportant factors in land–atmosphere interactions: surface runoff generations and interactions between surface and groundwater
This paper presents two recent improvements on the current version of the three-layer variable infiltration capacity (VIC-3L) model. One is to include the infiltration excess runoff generation mechanism in the variable infiltration capacity (VIC) by considering effects of subgrid spatial soil heterogeneities, which is consistent with the VIC’s earlier subgrid spatial variability treatment for t...
متن کاملEvaluation and Determination of the Coefficients of Infiltration Models in Marvdasht Region, Fars Province
Infiltration process plays an important role in water cycle of the nature. Conducting field experiments is necessary to determine the coefficients of infiltration equations due to the dependence of these coefficients to the soil type, soil surface conditions and the amount of initial soil moisture content. This study has been carried out in a field located in Islamic Azad University, Marvdasht ...
متن کامل